A Scalable Dual-Clock FIFO for Data Transfers Between Arbitrary and Haltable Clock Domains

A robust, scalable, and power efficient dual-clock first-input first-out (FIFO) architecture which is useful for transferring data between modules operating in different clock domains is presented. The architecture supports correct operation in applications where multiple clock cycles of latency exi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on very large scale integration (VLSI) systems Vol. 15; no. 10; pp. 1125 - 1134
Main Authors: Apperson, R.W., Zhiyi Yu, Meeuwsen, M.J., Mohsenin, T., Baas, B.M.
Format: Journal Article
Language:English
Published: New York IEEE 01-10-2007
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A robust, scalable, and power efficient dual-clock first-input first-out (FIFO) architecture which is useful for transferring data between modules operating in different clock domains is presented. The architecture supports correct operation in applications where multiple clock cycles of latency exist between the data producer, FIFO, and the data consumer; and with arbitrary clock frequency changes, halting, and restarting in either or both clock domains. The architecture is demonstrated in both a 0.18- mum CMOS full-custom design and a 0.18-mum CMOS standard cell design used in a globally asynchronous locally synchronous array processor. It achieves 580-MHz operation and 10.3-mW power dissipation while performing simultaneous FIFO read and write operations at 1.8 V.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1063-8210
1557-9999
DOI:10.1109/TVLSI.2007.903938