Effect of an acute increase in central blood volume on cerebral hemodynamics

Systemic blood distribution is an important factor involved in regulating cerebral blood flow (CBF). However, the effect of an acute change in central blood volume (CBV) on CBF regulation remains unclear. To address our question, we sought to examine the CBF and systemic hemodynamic responses to mic...

Full description

Saved in:
Bibliographic Details
Published in:American journal of physiology. Regulatory, integrative and comparative physiology Vol. 309; no. 8; p. R902
Main Authors: Ogoh, Shigehiko, Hirasawa, Ai, Raven, Peter B, Rebuffat, Thomas, Denise, Pierre, Lericollais, Romain, Sugawara, Jun, Normand, Hervé
Format: Journal Article
Language:English
Published: United States 15-10-2015
Subjects:
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Systemic blood distribution is an important factor involved in regulating cerebral blood flow (CBF). However, the effect of an acute change in central blood volume (CBV) on CBF regulation remains unclear. To address our question, we sought to examine the CBF and systemic hemodynamic responses to microgravity during parabolic flight. Twelve healthy subjects were seated upright and exposed to microgravity during parabolic flight. During the brief periods of microgravity, mean arterial pressure was decreased (-26 ± 1%, P < 0.001), despite an increase in cardiac output (+21 ± 6%, P < 0.001). During microgravity, central arterial pulse pressure and estimated carotid sinus pressure increased rapidly. In addition, this increase in central arterial pulse pressure was associated with an arterial baroreflex-mediated decrease in heart rate (r = -0.888, P < 0.0001) and an increase in total vascular conductance (r = 0.711, P < 0.001). The middle cerebral artery mean blood velocity (MCA Vmean) remained unchanged throughout parabolic flight (P = 0.30). During microgravity the contribution of cardiac output to MCA Vmean was gradually reduced (P < 0.05), and its contribution was negatively correlated with an increase in total vascular conductance (r = -0.683, P < 0.0001). These findings suggest that the acute loading of the arterial and cardiopulmonary baroreceptors by increases in CBV during microgravity results in acute and marked systemic vasodilation. Furthermore, we conclude that this marked systemic vasodilation decreases the contribution of cardiac output to CBF. These findings suggest that the arterial and cardiopulmonary baroreflex-mediated peripheral vasodilation along with dynamic cerebral autoregulation counteracts a cerebral overperfusion, which otherwise would occur during acute increases in CBV.
ISSN:1522-1490
DOI:10.1152/ajpregu.00137.2015