Effects of the compatibility of a polyacrylic block copolymer/tackifier blend on the phase structure and tack of a pressure-sensitive adhesive

Adhesion and viscoelastic properties and morphology of a polyacrylic block copolymer/tackifier blend were investigated. Special rosin ester resins with different weight average molecular weights of 650, 710, 890, and 2160 were used as the tackifier and blended with a polyacrylic block copolymer cons...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied polymer science Vol. 123; no. 5; pp. 2883 - 2893
Main Authors: Nakamura, Yoshinobu, Sakai, Yu, Imamura, Keigo, Ito, Keiko, Fujii, Syuji, Urahama, Yoshiaki
Format: Journal Article
Language:English
Published: Hoboken Wiley Subscription Services, Inc., A Wiley Company 05-03-2012
Wiley
Wiley Subscription Services, Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Adhesion and viscoelastic properties and morphology of a polyacrylic block copolymer/tackifier blend were investigated. Special rosin ester resins with different weight average molecular weights of 650, 710, 890, and 2160 were used as the tackifier and blended with a polyacrylic block copolymer consisting of poly(methyl methacrylate) and poly(n‐butyl acrylate) blocks at tackifier content levels of 10, 30, and 50 wt %. The compatibility decreased with an increase in molecular weight. From TEM observation, the number of formed agglomerates of the tackifier with sizes on the order of several tens of nanometers increased with increasing tackifier content and molecular weight of the tackifier in the range from 650 to 890. For the tackifier with a molecular weight of 2160, micrometer‐sized agglomerates were observed. The storage modulus at low temperature and the glass transition temperature of adhesive measured by a dynamic mechanical analysis increased dependent on the number of formed nanometer sized agglomerates. Tack was measured using a rolling cylinder tack tester over wide temperature and rolling rate ranges, and master curves were prepared in accordance with the time‐temperature superposition law. Tack and peel strength were optimum at a blend combination of intermediate compatibility, i.e., the molecular weight of 890. These optimum properties were correlated to maximal values of the storage modulus at room temperature and the glass transition temperature. Therefore, it was found that these features of blend properties are strongly affected by the nanometer sized agglomerates of tackifier. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012
Bibliography:ark:/67375/WNG-B21R26J2-H
ArticleID:APP34883
istex:42F42D9F6815D318FF9EFCB965BEDCB04FF0C9D1
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0021-8995
1097-4628
1097-4628
DOI:10.1002/app.34883