Proteomics and Network Analyses Reveal Inhibition of Akt‐mTOR Signaling in CD4+ T Cells by Mycobacterium tuberculosis Mannose‐Capped Lipoarabinomannan
Mycobacterium tuberculosis (Mtb) cell wall glycolipid mannose‐capped lipoarabinomannan (ManLAM) inhibits CD4+ T‐cell activation by inhibiting proximal T‐cell receptor (TCR) signaling when activated by anti‐CD3. To understand the impact of ManLAM on CD4+ T‐cell function when both the TCR–CD3 complex...
Saved in:
Published in: | Proteomics (Weinheim) Vol. 17; no. 22 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Germany
Wiley Subscription Services, Inc
01-11-2017
John Wiley and Sons Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Mycobacterium tuberculosis (Mtb) cell wall glycolipid mannose‐capped lipoarabinomannan (ManLAM) inhibits CD4+ T‐cell activation by inhibiting proximal T‐cell receptor (TCR) signaling when activated by anti‐CD3. To understand the impact of ManLAM on CD4+ T‐cell function when both the TCR–CD3 complex and major costimulator CD28 are engaged, we performed label‐free quantitative MS and network analysis. Mixed‐effect model analysis of peptide intensity identified 149 unique peptides representing 131 proteins that were differentially regulated by ManLAM in anti‐CD3‐ and anti‐CD28‐activated CD4+ T cells. Crosstalker, a novel network analysis tool identified dysregulated translation, TCA cycle, and RNA metabolism network modules. PCNA, Akt, mTOR, and UBC were found to be bridge node proteins connecting these modules of dysregulated proteins. Altered PCNA expression and cell cycle analysis showed arrest at the G2M phase. Western blot confirmed that ManLAM inhibited Akt and mTOR phosphorylation, and decreased expression of deubiquitinating enzymes Usp9x and Otub1. Decreased NF‐κB phosphorylation suggested interference with CD28 signaling through inhibition of the Usp9x‐Akt‐mTOR pathway. Thus, ManLAM induced global changes in the CD4+ T‐cell proteome by affecting Akt‐mTOR signaling, resulting in broad functional impairment of CD4+ T‐cell activation beyond inhibition of proximal TCR–CD3 signaling. |
---|---|
Bibliography: | Present address: Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA Present address: Global Clinical Sciences, Sanofi Pasteur, Swiftwater, PA, USA + ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 [+]Present address: Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA [++]Present address: Global Clinical Sciences, Sanofi Pasteur, Swiftwater, PA, USA |
ISSN: | 1615-9853 1615-9861 |
DOI: | 10.1002/pmic.201700233 |