Effect of Sterilization on the Properties of a Bioactive Hybrid Coating Containing Hydroxyapatite

The objective of this study was to evaluate the influence of sterilization on a hybrid coating obtained from a sol composed of alkoxysilane tetraethoxysilane (TEOS) and organoalkoxysilane methyltriethoxysilane (MTES) containing 10% (mass) of hydroxyapatite particles. The coating was obtained by dip...

Full description

Saved in:
Bibliographic Details
Published in:Advances in materials science and engineering Vol. 2019; no. 2019; pp. 1 - 13
Main Authors: Brandalise, R. N., Rodói, V., Malfatti, C. F., Baldin, E. K. K.
Format: Journal Article
Language:English
Published: Cairo, Egypt Hindawi Publishing Corporation 01-01-2019
Hindawi
Hindawi Limited
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The objective of this study was to evaluate the influence of sterilization on a hybrid coating obtained from a sol composed of alkoxysilane tetraethoxysilane (TEOS) and organoalkoxysilane methyltriethoxysilane (MTES) containing 10% (mass) of hydroxyapatite particles. The coating was obtained by dip coating, by applying two layers (protective/bioactive), which were cured at different temperatures (450°C and 60°C). The effects of sterilization on the superficial, electrochemical, bioactive, and mechanical properties of the coating were evaluated by performing different sterilization processes, namely, steam autoclave, hydrogen peroxide plasma, and ethylene oxide. Subsequently, the coating was characterized by using scanning electron microscopy (SEM/FEG), and FTIR measurements were performed to characterize the chemical structure. The bioactivity and degradability of the coating were analyzed by mass variation after immersion in SBF and X-ray diffraction (XRD) analysis. The electrochemical behavior was assessed by open circuit potential (OCP) and potentiodynamic polarization curves and the mechanical behavior by wear resistance. Results showed that all sterilization processes caused significant morphological changes in the hybrid coating. The autoclaved sample presented the highest structural chemical changes, and, consequently, the highest degradability, even though it had a superior bioactive behavior in relation to the other samples. In addition, the sterilization processes influenced the electrochemical behavior of the hybrid coating and altered the mechanical resistance to abrasion, thus presenting lower wear performance in relation to the nonsterilized sample.
ISSN:1687-8434
1687-8442
DOI:10.1155/2019/8593193