Sex-Mediated Differences in TNF Signaling- and ECM-Related Gene Expression in Aged Rat Kidney
Aging leads to the functional decline of an organism, which is associated with age and sex. To understand the functional change of kidneys depending on age and sex, we carried out a transcriptome analysis using RNA sequencing (RNA-Seq) data from rat kidneys. Four differentially expressed gene (DEG)...
Saved in:
Published in: | Biological & pharmaceutical bulletin Vol. 46; no. 4; pp. 552 - 562 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Japan
Japan Science and Technology Agency
01-04-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Aging leads to the functional decline of an organism, which is associated with age and sex. To understand the functional change of kidneys depending on age and sex, we carried out a transcriptome analysis using RNA sequencing (RNA-Seq) data from rat kidneys. Four differentially expressed gene (DEG) sets were generated according to age and sex, and Gene Ontology analysis and overlapping analysis of Kyoto Encyclopedia of Genes and Genomes pathways were performed for the DEG sets. Through the analysis, we revealed that inflammation- and extracellular matrix (ECM)-related genes and pathways were upregulated in both males and females during aging, which was more prominent in old males than in old females. Furthermore, quantitative real-time PCR analysis confirmed that the expression of tumor necrosis factor (TNF) signaling-related genes, Birc3, Socs3, and Tnfrsf1b, and ECM-related genes, Cd44, Col3a1, and Col5a2, which showed that the genes were markedly upregulated in males and not females during aging. Also, hematoxylin-eosin (H&E) staining for histological analysis showed that renal damage was highly shown in old males rather than old females. In conclusion, in the rat kidney, the genes involved in TNF signaling and ECM accumulation are upregulated in males more than in females during aging. These results suggest that the upregulation of the genes may have a higher contribution to age-related kidney inflammation and fibrosis in males than in females. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0918-6158 1347-5215 |
DOI: | 10.1248/bpb.b22-00601 |