Curvature-Induced Asymmetric Spin-Wave Dispersion
In magnonics, spin waves are conceived of as electron-charge-free information carriers. Their wave behavior has established them as the key elements to achieve low power consumption, fast operative rates, and good packaging in magnon-based computational technologies. Hence, knowing alternative ways...
Saved in:
Published in: | Physical review letters Vol. 117; no. 22; p. 227203 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
25-11-2016
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In magnonics, spin waves are conceived of as electron-charge-free information carriers. Their wave behavior has established them as the key elements to achieve low power consumption, fast operative rates, and good packaging in magnon-based computational technologies. Hence, knowing alternative ways that reveal certain properties of their undulatory motion is an important task. Here, we show using micromagnetic simulations and analytical calculations that spin-wave propagation in ferromagnetic nanotubes is fundamentally different than in thin films. The dispersion relation is asymmetric regarding the sign of the wave vector. It is a purely curvature-induced effect and its fundamental origin is identified to be the classical dipole-dipole interaction. The analytical expression of the dispersion relation has the same mathematical form as in thin films with the Dzyalonshiinsky-Moriya interaction. Therefore, this curvature-induced effect can be seen as a "dipole-induced Dzyalonshiinsky-Moriya-like" effect. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.117.227203 |