Sex-specific SCAR markers in the dioecious plant Rumex nivalis (Polygonaceae) and implications for the evolution of sex chromosomes

We developed SCAR primers based on isolated and sequenced male-specific fragments as identified in an AFLP analysis of the dioecious plant Rumex nivalis. PCR amplification using these primers on females and males resulted in fragments exclusively present in males. Co-amplification of the nuclear rDN...

Full description

Saved in:
Bibliographic Details
Published in:Theoretical and applied genetics Vol. 108; no. 2; pp. 238 - 242
Main Authors: STEHLIK, I, BLATTNER, F. R
Format: Journal Article
Language:English
Published: Heidelberg Springer 2004
Berlin Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We developed SCAR primers based on isolated and sequenced male-specific fragments as identified in an AFLP analysis of the dioecious plant Rumex nivalis. PCR amplification using these primers on females and males resulted in fragments exclusively present in males. Co-amplification of the nuclear rDNA internal transcribed spacer 2 together with the male-specific fragment was applied as an internal control for successful PCR reactions to avoid false-negative sex scoring. With a length of about 164 bp, the AFLP fragment was of a similar size as the tandemly arranged, repetitive sequences of 180 bp located on the Y chromosomes of Rumex acetosa. The genetic distances between the Y-chromosomal sequences of R. nivalis and R. acetosa, both members of the section Acetosa, were substantial. We found intra-individual divergence among cloned sequences of the male-specific fragment in R. nivalis. The patterns of interspecific and intra-individual sequence variation found are in accordance with proposed modes of the evolution of sex chromosomes. Y chromosomes possibly arose only once in the genus Rumex and consist mainly of heterochromatic DNA. Due to the almost complete absence of selection on them, Y chromosomes are likely to accumulate large numbers of mutations.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0040-5752
1432-2242
DOI:10.1007/s00122-003-1425-7