Derivation, Comprehensive Analysis, and Assay Validation of a Pyroptosis-Related lncRNA Prognostic Signature in Patients With Ovarian Cancer
Pyroptosis is regulated by long non-coding RNAs (lncRNAs) in ovarian cancer (OC). Therefore, a comprehensive analysis of pyroptosis-related lncRNAs (PRLs) in OC is crucial for developing therapeutic strategies and survival prediction. Based on public database raw data, mutations in the landscape of...
Saved in:
Published in: | Frontiers in oncology Vol. 12; p. 780950 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Switzerland
Frontiers Media S.A
24-02-2022
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Pyroptosis is regulated by long non-coding RNAs (lncRNAs) in ovarian cancer (OC). Therefore, a comprehensive analysis of pyroptosis-related lncRNAs (PRLs) in OC is crucial for developing therapeutic strategies and survival prediction.
Based on public database raw data, mutations in the landscape of pyroptosis-related genes (PRGs) in patients with OC were investigated thoroughly. PRLs were identified by calculating Pearson correlation coefficients. Cox and LASSO regression analyses were performed on PRLs to screen for lncRNAs participating in the risk signature. Furthermore, receiver operating characteristic (ROC) curves, Kaplan-Meier survival analyses, decision curve analysis (DCA) curves, and calibration curves were used to confirm the clinical benefits. To assess the ability of the risk signature to independently predict prognosis, it was included in a Cox regression analysis with clinicopathological parameters. Two nomograms were constructed to facilitate clinical application. In addition, potential biological functions of the risk signature were investigated using gene function annotation. Subsequently, immune-related landscapes and
mutations were compared in different risk groups using diverse bioinformatics algorithms. Finally, we conducted a meta-analysis and
assays on alternative lncRNAs.
A total of 374 patients with OC were randomized into training and validation cohorts (7:3). A total of 250 PRLs were selected from all the lncRNAs. Subsequently, a risk signature (DICER1-AS1, MIR600HG, AC083880.1, AC109322.1, AC007991.4, IL6R-AS1, AL365361.1, and AC022098.2) was constructed to distinguish the risk of patient survival. The ROC curve, K-M analysis, DCA curve, and calibration curve indicated excellent predictive performance for determining overall survival (OS) based on the risk signature in each cohort (
< 0.05). The Cox regression analysis indicated that the risk signature was an independent prognostic factor for OS (
< 0.05). Moreover, significant differences in the immune response and
mutations were identified in different groups distinguished by the risk signature (
< 0.05). Interestingly,
assays showed that an alternative lncRNA (
) could promote OC cell proliferation.
The PRL risk signature could independently predict overall survival and guide treatment in patients with OC. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by: Jacinta Seraphina D’Souza, UM-DAE Centre for Excellence in Basic Sciences, India Reviewed by: Meng Zhou, Wenzhou Medical University, China; Zhen Cui, Tongji University, China This article was submitted to Molecular and Cellular Oncology, a section of the journal Frontiers in Oncology These authors have contributed equally to this work |
ISSN: | 2234-943X 2234-943X |
DOI: | 10.3389/fonc.2022.780950 |