Carbazole based organic dyes as effective photosensitizers: A comprehensive analysis of their structure‐property relationships

The present work describes the effect of structural modification of carbazole‐based photosensitizers carrying carboxylic acid as a common anchoring functionality, on the photovoltaic parameters of newly fabricated DSSCs. In this study, we have selected our previously reported three carbazole‐based d...

Full description

Saved in:
Bibliographic Details
Published in:Electrochemical science advances Vol. 2; no. 3
Main Authors: Naik, Praveen, Keremane, Kavya S., Elmorsy, Mohamed R., El‐Shafei, Ahmed, Adhikari, Airody Vasudeva
Format: Journal Article
Language:English
Published: Aachen John Wiley & Sons, Inc 01-06-2022
Wiley-VCH
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The present work describes the effect of structural modification of carbazole‐based photosensitizers carrying carboxylic acid as a common anchoring functionality, on the photovoltaic parameters of newly fabricated DSSCs. In this study, we have selected our previously reported three carbazole‐based derivatives, viz. S1‐3 having different structural designs, that is, D‐π‐A (S1), D‐D‐π‐A (S2), and A‐π‐D‐π‐A (S3) with different donor units and π‐spacers, but an identical cyanoacetic acid anchoring unit. We have evaluated their optical, electrochemical, and photovoltaic behaviors in order to explore their structure‐property relationships. Also, the theoretical investigations were performed to obtain a deeper understanding of their HOMO‐LUMO levels, charge distribution in FMOs, directional flow of electrons within the push‐pull type sensitizers, and optical behavior. Finally, the DSSCs were constructed by employing these dyes as sensitizers without any co‐absorbents and the performance of the devices was evaluated by using illuminated current‐voltage characteristics. Among the tested dyes, di‐anchoring S3 exhibited improved PCE of 3.77 % due to its strong adsorption on the TiO2 surface that resulted in superior VOC of the cell. While the S2 containing electron‐releasing anisole as an auxiliary donor exhibited better JSC value leading to the optimum PCE of 3.73 % which is comparable to that of S3. Obviously, these results validate the role of the π‐spacer and additional donor of the sensitizers on the overall performance of the DSSCs. Three push‐pull type carbazole‐based metal‐free dyes (S1‐3) with different structural configurations carrying a common anchoring group were subjected to in‐depth optical, electrochemical, theoretical, and photoelectrochemical studies as effective sensitizers in DSSCs. A comprehensive analysis of their structure‐property relationships has been performed.
ISSN:2698-5977
2698-5977
DOI:10.1002/elsa.202100061