Changes in Serotonin, Serotonin Transporter Expression and Serotonin Denervation Supersensitivity: Involvement in Chronic Central Pain after Spinal Hemisection in the Rat
Spinal cord injury (SCI) results in abnormal locomotor and pain syndromes in humans. In a rodent SCI model, T13 unilateral spinal hemisection results in bilateral mechanical allodynia and thermal hyperalgesia, partly by interruption of tonic descending serotonin (5-HT) inhibition. In the current stu...
Saved in:
Published in: | Experimental neurology Vol. 175; no. 2; pp. 347 - 362 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Amsterdam
Elsevier Inc
01-06-2002
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Spinal cord injury (SCI) results in abnormal locomotor and pain syndromes in humans. In a rodent SCI model, T13 unilateral spinal hemisection results in bilateral mechanical allodynia and thermal hyperalgesia, partly by interruption of tonic descending serotonin (5-HT) inhibition. In the current study, we examined changes in density and distribution of 5-HT and 5-HTT in cervical (C8) and lumbar (L5) enlargements after T13 spinal hemisection and studied the effects of intrathecally delivered 5-HT (10, 21, and 63 μg), 5-HT antagonist methysergide (125 μg/kg), and 5-HT reuptake inhibitor fluvoxamine (75 μg/kg) on pain-related behaviors. Thirty-day-old male Sprague–Dawley rats were spinally hemisected and sacrificed at 3 (n = 20) and 28 (n = 20) days postsurgery for immunohistochemistry, Western blot, and ELISA analysis and compared against sham-operated animals (n = 10). At day 3, C8 5-HT levels were not significantly changed but at L5 there was a significant decrease in ipsilateral 5-HT in laminae I–II followed by incomplete recovery at 28 days postinjury. At both 3 and 28 days postinjury, C8 5-HTT levels were not significantly changed, but at L5 there was significant ipsilateral up-regulation of 5-HTT in laminae I–II. A second group of animals (n = 30) was hemisected and, starting at 28 days postinjury, behaviorally tested with intrathecal compounds. Increasing doses of 5-HT attenuated both fore- and hindlimb mechanical allodynia and thermal hyperalgesia, and effects of endogenous 5-HT were attenuated by methysergide and enhanced with fluvoxamine, all without locomotor alterations. Sham controls (n = 10) were unaffected. Thus, permanent changes occur in 5-HT and 5-HTT after SCI, denervation 5-HT supersensitivity develops, and modulation of 5-HT attenuates pain-related behaviors. Insight gained by these studies may aid in the understanding of dynamic 5-HT systems which will be useful in treating chronic central pain after SCI. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0014-4886 1090-2430 |
DOI: | 10.1006/exnr.2002.7892 |