Integrated self-biased hexaferrite microstrip circulators for millimeter-wavelength applications
Planar microstrip Y-junction circulators have been fabricated from metallized 130-/spl mu/m-thick self-biased strontium hexaferrite ceramic die, and then bonded onto silicon die to yield integrated circulator circuits. The impedance matching networks needed to transform the low-impedance circulator...
Saved in:
Published in: | IEEE transactions on microwave theory and techniques Vol. 49; no. 2; pp. 385 - 387 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
IEEE
01-02-2001
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Planar microstrip Y-junction circulators have been fabricated from metallized 130-/spl mu/m-thick self-biased strontium hexaferrite ceramic die, and then bonded onto silicon die to yield integrated circulator circuits. The impedance matching networks needed to transform the low-impedance circulator outputs were deployed on low-loss alumina or glass dielectrics to minimize circuit losses. These magnetically self-biased circulators show a normalized isolation and insertion loss of 33 and 2.8 dB, respectively, and a 1% bandwidth for an isolation of 20 dB. Application of small (H<1.5 kOe) magnetic bias fields improved the isolation and insertion loss values to 50 and 1.6 dB, respectively. This design may form the basis for future monolithic millimeter-wave integrated circulator circuits that do not require magnets. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ISSN: | 0018-9480 1557-9670 |
DOI: | 10.1109/22.903102 |