Influence of Trans Fat on Skin Damage in First-Generation Rats Exposed to UV Radiation
The influence of trans fatty acids (TFA) on lipid profile, oxidative damage and mitochondrial function in the skin of rats exposed to ultraviolet radiation (UVR) was assessed. The first‐generation offspring of female Wistar rats supplemented from pregnancy with either soybean oil (C‐SO, rich in n–6...
Saved in:
Published in: | Photochemistry and photobiology Vol. 91; no. 2; pp. 424 - 430 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Blackwell Publishing Ltd
01-03-2015
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The influence of trans fatty acids (TFA) on lipid profile, oxidative damage and mitochondrial function in the skin of rats exposed to ultraviolet radiation (UVR) was assessed. The first‐generation offspring of female Wistar rats supplemented from pregnancy with either soybean oil (C‐SO, rich in n–6 FA; control group) or hydrogenated vegetable fat (HVF, rich in TFA) were continued with the same supplements until adulthood, when half of each group was exposed to UVR for 12 weeks. The HVF group showed higher TFA cutaneous incorporation, increased protein carbonyl (PC) levels, decreased functionality of mitochondrial enzymes and antioxidant defenses of the skin. After UVR, the HVF group showed increased skin thickness and reactive species (RS) generation, with decreased skin antioxidant defenses. RS generation was positively correlated with skin thickness, wrinkles and PC levels. Once incorporated to skin, TFA make it more susceptible to developing UVR‐induced disorders.
Metabolism of trans fat by COX and LOX: The dietary intake of trans fat favors the synthesis of biologically active prostanoids produced during inflammatory processes. After ultraviolet radiation exposure, trans fat supplementation, which is rich in trans fatty acids (TFA), increases the skin thickness, reactive species generation and decreases the skin antioxidant defenses. |
---|---|
Bibliography: | FAPERGS - No. EditalPqG 006/2010- 1014710 ArticleID:PHP12414 CNPq ark:/67375/WNG-JDTG5S8X-D CAPES istex:D796C725A9CD81B9FCE599FF48204038A7027F48 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0031-8655 1751-1097 |
DOI: | 10.1111/php.12414 |