Use of highly encapsulated Streptococcus pneumoniae strains in a flow-cytometric assay for assessment of the phagocytic capacity of serotype-specific antibodies

A phagocytosis assay for Streptococcus pneumoniae based on flow cytometry (FACS) with human polymorphonuclear cells and human complement was developed for the study of human vaccination antisera. Human prevaccination sera already contain high levels of C-polysaccharide (C-PS) antibodies, which are n...

Full description

Saved in:
Bibliographic Details
Published in:Clinical and diagnostic laboratory immunology Vol. 5; no. 5; pp. 703 - 710
Main Authors: Jansen, W T, Gootjes, J, Zelle, M, Madore, D V, Verhoef, J, Snippe, H, Verheul, A F
Format: Journal Article
Language:English
Published: United States American Society for Microbiology 01-09-1998
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A phagocytosis assay for Streptococcus pneumoniae based on flow cytometry (FACS) with human polymorphonuclear cells and human complement was developed for the study of human vaccination antisera. Human prevaccination sera already contain high levels of C-polysaccharide (C-PS) antibodies, which are not protective in humans but which might give false positive results in a flow-cytometry-based assay. Cultures of S. pneumoniae grown to log phase on three consecutive days, followed by heat inactivation, yielded stable and highly encapsulated strains for serotypes 6A, 6B, 14, 19F, and 23F. As a result, only serotype-specific antibodies were able to facilitate phagocytosis of these strains, whereas no phagocytosis was observed with antibodies against C-PS or pneumococcal surface proteins. No, or weak, phagocytosis was observed with human prevaccination sera, whereas in general, postvaccination antisera facilitated phagocytosis. A highly significant correlation was observed between enzyme-linked immunosorbent assay titers and FACS phagocytosis titers (r = 0.98, P < 0.001) for serotype 23F pneumococci with human vaccination antisera. For all serotypes, interassay variation was below 10%. Major advantages of this assay over the classical killing assay are that (i) limited amounts of sera are required (10 microliter per titration curve), (ii) 600 samples can be processed in one day by one person, and (iii) cells can be fixed and measurement of the samples can be performed up to 1 week later.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
Corresponding author. Mailing address: Eijkman-Winkler Institute for Microbiology, Infectious Diseases and Inflammation, Section Vaccines, Utrecht University Hospital, Rm. G04.614, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands. Phone: 31-30-2506533. Fax: 31-30-2541770. E-mail: W.T.M.Jansen@lab.azu.nl.
ISSN:1071-412X
1098-6588
DOI:10.1128/cdli.5.5.703-710.1998