Cyclin D3 is dispensable for human diffuse large B-cell lymphoma survival and growth: evidence for redundancy with cyclin E

Genomic changes disrupting the expression of cyclin D3 are associated with aberrant growth of several human B-lymphoid malignancies. We demonstrate that the human diffuse large B-cell lymphoma (DLBCL), OCI-LY18 (LY18) expresses cyclin D3 but not cyclins D1 and D2. RNA interference was used to deplet...

Full description

Saved in:
Bibliographic Details
Published in:Cell cycle (Georgetown, Tex.) Vol. 9; no. 4; pp. 820 - 828
Main Authors: Gumina, Maria R., Xu, Chenjia, Chiles, Thomas C.
Format: Journal Article
Language:English
Published: United States Taylor & Francis 15-02-2010
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Genomic changes disrupting the expression of cyclin D3 are associated with aberrant growth of several human B-lymphoid malignancies. We demonstrate that the human diffuse large B-cell lymphoma (DLBCL), OCI-LY18 (LY18) expresses cyclin D3 but not cyclins D1 and D2. RNA interference was used to deplete cyclin D3 from LY18 cells. Surprisingly, knockdown of cyclin D3 did not inhibit pRb phosphorylation on cdk4/6- and cdk2-specific residues or measurably affect viability and proliferation. These results suggest that cyclin D3 is dispensable in LY18 cell proliferation and survival. Similar results were obtained following depletion of cyclin E. By contrast, combined knockdown of cyclins D3 and E had substantial consequences leading to G1-phase arrest and inhibition of proliferation. Whereas cell cycle distribution was not affected following individual depletion of cdk4, cdk6, or cdk2, the combined knockdown of cdk4 and cdk6 led to accumulation of LY18 cells in G1-phase of the cell cycle and inhibition of proliferation. Likewise treatment of LY18 cells with 2-Bromo-12,13-dihydro-5H-indolo[2,3-a]pyrrolo[3,4-c]carbazole-5,7(6H)-dione, a selective inhibitor of cdk4/6, led to inhibition of proliferation. Taken together, these results uncover a built-in redundancy with cyclins D3 and E for G1-S progression. Moreover these findings highlight the rationale for simultaneous disruption of cdk4/6 as a potential therapeutic cancer strategy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1538-4101
1551-4005
DOI:10.4161/cc.9.4.10783