Nanoporous copper oxide ribbon assembly of free-standing nanoneedles as biosensors for glucose

Inspired by a sequential hydrolysis-precipitation mechanism, morphology-controllable hierarchical cupric oxide (CuO) nanostructures are facilely fabricated by a green water/ethanol solution-phase transformation of Cu(x)(OH)(2x-2)(SO4) precursors in the absence of any organic capping agents and witho...

Full description

Saved in:
Bibliographic Details
Published in:Analyst (London) Vol. 140; no. 15; p. 5205
Main Authors: Sun, Shaodong, Sun, Yuexia, Chen, Anran, Zhang, Xiaozhe, Yang, Zhimao
Format: Journal Article
Language:English
Published: England 01-01-2015
Subjects:
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Inspired by a sequential hydrolysis-precipitation mechanism, morphology-controllable hierarchical cupric oxide (CuO) nanostructures are facilely fabricated by a green water/ethanol solution-phase transformation of Cu(x)(OH)(2x-2)(SO4) precursors in the absence of any organic capping agents and without annealing treatment in air. Antlerite Cu3(OH)4(SO4) precursors formed in a low volume ratio between water and ethanol can transform into a two-dimensional (2D) hierarchical nanoporous CuO ribbon assembly of free-standing nanoneedle building blocks and hierarchical nanoneedle-aggregated CuO flowers. Brochantite Cu4(OH)6(SO4) precursors formed in a high volume ratio between water and ethanol can transform into hierarchical nanoplate-aggregated CuO nanoribbons and nanoflowers. Such 2D hierarchical nanoporous CuO ribbons serving as a promising electrode material for nonenzymatic glucose detection show high sensitivity, a low detection limit, fast amperometric response and good selectivity. Significantly, this green water-induced precursor-hydrolysis method might be used to control effectively the growth of other metal oxide micro-/nanostructures.
ISSN:1364-5528
DOI:10.1039/c5an00609k