Dandelion-like nickel/cobalt metal-organic framework based electrode materials for high performance supercapacitors

[Display omitted] Metal-organic frameworks (MOFs), serving as a promising electrode material in the supercapacitors, have attracted tremendous interests in recent years. Here, through modifying the molar ratio of the Ni2+ and Co2+, we have successfully fabricated Ni-MOF and Ni/Co-MOF by a facile hyd...

Full description

Saved in:
Bibliographic Details
Published in:Journal of colloid and interface science Vol. 531; pp. 83 - 90
Main Authors: Gao, Shuwen, Sui, Yanwei, Wei, Fuxiang, Qi, Jiqiu, Meng, Qingkun, Ren, Yaojian, He, Yezeng
Format: Journal Article
Language:English
Published: United States Elsevier Inc 01-12-2018
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] Metal-organic frameworks (MOFs), serving as a promising electrode material in the supercapacitors, have attracted tremendous interests in recent years. Here, through modifying the molar ratio of the Ni2+ and Co2+, we have successfully fabricated Ni-MOF and Ni/Co-MOF by a facile hydrothermal method. The Ni/Co-MOF with a dandelion-like hollow structure shows an excellent specific capacitance of 758 F g−1 at 1 A g−1 in the three-electrode system. Comparing with Ni-MOF, the obtained Ni/Co-MOF has a better rate capacitance (89% retention at 10 A g−1) and cycling life (75% retention after 5000 circulations). Besides, the assembled asymmetric supercapacitor based on Ni/Co-MOF and active carbon exhibits a high specific energy density of 20.9 W h kg−1 at the power density of 800 W kg−1. All these results demonstrate that the mixed-metal strategy is an effective way to optimize the morphology and improve the electrochemical property of the MOFs.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2018.07.044