Hyperspectral Imaging as an Early Biomarker for Radiation Exposure and Microcirculatory Damage

Radiation exposure can lead to detrimental effects in skin microcirculation. The precise relationship between radiation dose received and its effect on cutaneous perfusion still remains controversial. Previously, we have shown that hyperspectral imaging (HSI) is able to demonstrate long-term reducti...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in oncology Vol. 5; p. 232
Main Authors: Chin, Michael S, Freniere, Brian B, Lancerotto, Luca, Lujan-Hernandez, Jorge, Saleeby, Jonathan H, Lo, Yuan-Chyuan, Orgill, Dennis P, Lalikos, Janice F, Fitzgerald, Thomas J
Format: Journal Article
Language:English
Published: Switzerland Frontiers Media S.A 26-10-2015
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Radiation exposure can lead to detrimental effects in skin microcirculation. The precise relationship between radiation dose received and its effect on cutaneous perfusion still remains controversial. Previously, we have shown that hyperspectral imaging (HSI) is able to demonstrate long-term reductions in cutaneous perfusion secondary to chronic microvascular injury. This study characterizes the changes in skin microcirculation in response to varying doses of ionizing radiation and investigates these microcirculatory changes as a possible early non-invasive biomarker that may correlate with the extent of long-term microvascular damage. Immunocompetent hairless mice (n = 66) were exposed to single fractions of superficial beta-irradiation in doses of 0, 5, 10, 20, 35, or 50 Gy. A HSI device was utilized to measure deoxygenated hemoglobin levels in irradiated and control areas. HSI measurements were performed at baseline before radiation exposure and for the first 3 days post-irradiation. Maximum macroscopic skin reactions were graded, and histological assessment of cutaneous microvascular densities at 4 weeks post-irradiation was performed in harvested tissue by CD31 immunohistochemistry. CD31 immunohistochemistry demonstrated a significant correlation (r = 0.90, p < 0.0001) between dose and vessel density reduction at 4 weeks. Using HSI analysis, early changes in deoxygenated hemoglobin levels were observed during the first 3 days post-irradiation in all groups. These deoxygenated hemoglobin changes varied proportionally with dose (r = 0.98, p < 0.0001) and skin reactions (r = 0.98, p < 0.0001). There was a highly significant correlation (r = 0.91, p < 0.0001) between these early changes in deoxygenated hemoglobin and late vascular injury severity assessed at the end of 4 weeks. Radiation dose is directly correlated with cutaneous microvascular injury severity at 4 weeks in our model. Early post-exposure measurement of cutaneous deoxygenated hemoglobin levels may be a useful biomarker for radiation dose reconstruction and predictor for chronic microvascular injury.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Roberta Di Pietro, G. d’Annunzio University of Chieti-Pescara, Italy
Specialty section: This article was submitted to Radiation Oncology, a section of the journal Frontiers in Oncology
Reviewed by: Michael Wayne Epperly, University of Pittsburgh Cancer Institute, USA; Wenyin Shi, Thomas Jefferson University, USA
ISSN:2234-943X
2234-943X
DOI:10.3389/fonc.2015.00232