Human sperm motility is downregulated by the AMPK activator A769662
Summary AMP‐activated kinase (AMPK) plays a key function in maintaining cellular energy homeostasis. We recently identified and localized AMPK protein in human spermatozoa and showed that inhibition of AMPK activity significantly modified human sperm motility. Recently, AMPK has gained great relevan...
Saved in:
Published in: | Andrology (Oxford) Vol. 5; no. 6; pp. 1131 - 1140 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
Wiley Subscription Services, Inc
01-11-2017
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Summary
AMP‐activated kinase (AMPK) plays a key function in maintaining cellular energy homeostasis. We recently identified and localized AMPK protein in human spermatozoa and showed that inhibition of AMPK activity significantly modified human sperm motility. Recently, AMPK has gained great relevance as prime target for pharmacological approaches in several energy‐related pathologies and therefore pharmacological research is aimed to develop direct AMPK‐activating compounds such as A769662. Our aim was to investigate the effect of A769662 in essential functional processes of human spermatozoa. Human spermatozoa were incubated in the presence or absence of the AMPK activator A769662 for different incubation times (0–20 h) and motility was evaluated by CASA system whereas other functional parameters were evaluated by flow cytometry. A769662 treatment significantly reduces the percentages of motile, progressive, and rapid spermatozoa starting at 2 h. Moreover, AMPK activator in human spermatozoa causes a significant reduction in any velocity measured, which is concomitant to a significant decrease in the percentage of rapid spermatozoa, both at short‐ (2–3 h) and long‐time treatment (20 h). Treatment of human spermatozoa with A769662 does not significantly alter any of the following functional parameters: sperm viability, mitochondrial membrane potential, phosphatidylserine translocation to the outer leaf of plasma membrane, acrosome membrane integrity, or mitochondrial superoxide anion production. In summary, our results suggest that AMPK in human spermatozoa contributes to the regulation of sperm motility, without affecting basic physiological parameters of human spermatozoa (viability, mitochondrial membrane potential or reactive oxygen species production, acrosome membrane integrity, phosphatidylserine exposure at plasma membrane). As sperm motility is required in the female reproductive tract to achieve fertilization, we conclude that AMPK is an essential regulatory kinase of the human spermatozoa function. This conclusion needs to be taken into account when AMPK is elected as prime target in pharmacological approaches for several energy‐related pathologies. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2047-2919 2047-2927 |
DOI: | 10.1111/andr.12423 |