Laccase immobilized manganese ferrite nanoparticle: Synthesis and LSSVM intelligent modeling of decolorization
Laccase was immobilized onto manganese ferrite nanoparticle (MFN) and dye decolorization from single and binary systems was studied. The characteristics of laccase immobilized manganese ferrite nanoparticle (LIMFN) were investigated using Fourier transform infrared (FTIR) and scanning electron micro...
Saved in:
Published in: | Water research (Oxford) Vol. 67; pp. 216 - 226 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Kidlington
Elsevier Ltd
15-12-2014
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Laccase was immobilized onto manganese ferrite nanoparticle (MFN) and dye decolorization from single and binary systems was studied. The characteristics of laccase immobilized manganese ferrite nanoparticle (LIMFN) were investigated using Fourier transform infrared (FTIR) and scanning electron microscopy (SEM). Direct red 31 (DR31), Acid blue 92 (AB92) and Direct green 6 (DG6) were used. A least square support vector machine (LSSVM) was developed to predict the decolorization efficiency of various single and binary systems based on the obtained laboratory data under different experimental conditions. Statistical and graphical quality measures were also employed to evaluate the performance and accuracy of the developed intelligent models. It is shown that the predictions of the designed LSSVM models are in close agreement with the experimental data. The effects of LIMFN dosage, pH and dye concentration on dye decolorization from single and binary systems were evaluated. Decolorization kinetics followed Michaelis–Menten Model.
[Display omitted]
•Laccase was immobilized onto manganese ferrite nanoparticle.•Dye decolorization from single and binary systems was studied.•Least square support vector machine (LSSVM) model was used.•The predictions of LSSVM model are in close agreement with the experimental data.•Decolorization kinetics followed Michaelis–Menten Model. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0043-1354 1879-2448 |
DOI: | 10.1016/j.watres.2014.09.011 |