Reduction of friction by normal oscillations. I. Influence of contact stiffness

The present paper is devoted to a theoretical analysis of sliding friction under the influence of oscillations perpendicular to the sliding plane. In contrast to previous works we analyze the influence of the stiffness of the tribological contact in detail and also consider the case of large oscilla...

Full description

Saved in:
Bibliographic Details
Published in:Friction Vol. 5; no. 1; pp. 45 - 55
Main Authors: Popov, M., Popov, V. L., Popov, N. V.
Format: Journal Article
Language:English
Published: Beijing Tsinghua University Press 01-03-2017
Springer Nature B.V
SpringerOpen
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The present paper is devoted to a theoretical analysis of sliding friction under the influence of oscillations perpendicular to the sliding plane. In contrast to previous works we analyze the influence of the stiffness of the tribological contact in detail and also consider the case of large oscillation amplitudes at which the contact is lost during a part of the oscillation period, so that the sample starts to “jump”. It is shown that the macroscopic coefficient of friction is a function of only two dimensionless parameters—a dimensionless sliding velocity and dimensionless oscillation amplitude. This function in turn depends on the shape of the contacting bodies. In the present paper, analysis is carried out for two shapes: a flat cylindrical punch and a parabolic shape. Here we consider “stiff systems”, where the contact stiffness is small compared with the stiffness of the system. The role of the system stiffness will be studied in more detail in a separate paper.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2223-7690
2223-7704
DOI:10.1007/s40544-016-0136-4