Mechanical Stress Improves Fat Graft Survival by Promoting Adipose-Derived Stem Cells Proliferation

Cell-assisted lipotransfer (CAL), defined as co-transplantation of aspirated fat with enrichment of adipose-derived stem cells (ASCs), is a novel technique for cosmetic and reconstructive surgery to overcome the low survival rate of traditional fat grafting. However, clinically approved techniques f...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences Vol. 23; no. 19; p. 11839
Main Authors: Chun, Jeong Jin, Chang, Jiyeon, Soedono, Shindy, Oh, Jieun, Kim, Yeong Jin, Wee, Syeo Young, Cho, Kae Won, Choi, Chang Yong
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-10-2022
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cell-assisted lipotransfer (CAL), defined as co-transplantation of aspirated fat with enrichment of adipose-derived stem cells (ASCs), is a novel technique for cosmetic and reconstructive surgery to overcome the low survival rate of traditional fat grafting. However, clinically approved techniques for increasing the potency of ASCs in CAL have not been developed yet. As a more clinically applicable method, we used mechanical stress to reinforce the potency of ASCs. Mechanical stress was applied to the inguinal fat pad by needling . Morphological and cellular changes in adipose tissues were examined by flow cytometric analysis 1, 3, 5, and 7 days after the procedure. The proliferation and adipogenesis potencies of ASCs were evaluated. CAL with ASCs treated with mechanical stress or sham control were performed, and engraftment was determined at 4 weeks post-operation. Flow cytometry analysis revealed that mechanical stress significantly increased the number as well as the frequency of ASC proliferation in fat. Proliferation assays and adipocyte-specific marker gene analysis revealed that mechanical stress promoted proliferation potential but did not affect the differentiation capacity of ASCs. Moreover, CAL with cells derived from mechanical stress-treated fat increased the engraftment. Our results indicate that mechanical stress may be a simple method for improving the efficacy of CAL by enhancing the proliferation potency of ASCs.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms231911839