Stabilization via Nonsmooth, Nonconvex Optimization

Nonsmooth variational analysis and related computational methods are powerful tools that can be effectively applied to identify local minimizers of nonconvex optimization problems arising in fixed-order controller design. We support this claim by applying nonsmooth analysis and methods to a challeng...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automatic control Vol. 51; no. 11; pp. 1760 - 1769
Main Authors: Burke, J.V., Henrion, D., Lewis, A.S., Overton, M.L.
Format: Journal Article
Language:English
Published: New York, NY IEEE 01-11-2006
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nonsmooth variational analysis and related computational methods are powerful tools that can be effectively applied to identify local minimizers of nonconvex optimization problems arising in fixed-order controller design. We support this claim by applying nonsmooth analysis and methods to a challenging "Belgian chocolate" stabilization problem posed in 1994: find a stable, minimum phase, rational controller that stabilizes a specified second-order plant. Although easily stated, this particular problem remained unsolved until 2002, when a solution was found using an eleventh-order controller. Our computational methods find a stabilizing third-order controller without difficulty, suggesting explicit formulas for the controller and for the closed loop system, which has only one pole with multiplicity 5. Furthermore, our analytical techniques prove that this controller is locally optimal in the sense that there is no nearby controller with the same order for which the closed loop system has all its poles further left in the complex plane. Although the focus of the paper is stabilization, once a stabilizing controller is obtained, the same computational techniques can be used to optimize various measures of the closed loop system, including its complex stability radius or H infin performance
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2006.884944