Mechanisms of macrophage migration inhibitory factor (MIF)-dependent tumor microenvironmental adaptation

Since its activity was first reported in the mid-1960s, macrophage migration inhibitory factor (MIF) has gone from a cytokine activity modulating monocyte motility to a pleiotropic regulator of a vast array of cellular and biological processes. Studies in recent years suggest that MIF contributes to...

Full description

Saved in:
Bibliographic Details
Published in:Experimental and molecular pathology Vol. 86; no. 3; pp. 180 - 185
Main Authors: Rendon, Beatriz E., Willer, Sharon S., Zundel, Wayne, Mitchell, Robert A.
Format: Journal Article
Language:English
Published: Netherlands Elsevier Inc 01-06-2009
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Since its activity was first reported in the mid-1960s, macrophage migration inhibitory factor (MIF) has gone from a cytokine activity modulating monocyte motility to a pleiotropic regulator of a vast array of cellular and biological processes. Studies in recent years suggest that MIF contributes to malignant disease progression on several different levels. Both circulating and intracellular MIF protein levels are elevated in cancer patients and MIF expression reportedly correlates with stage, metastatic spread and disease-free survival. Additionally, MIF expression positively correlates with angiogenic growth factor expression, microvessel density and tumor-associated neovascularization. Not coincidentally, MIF has recently been shown to contribute to tumoral hypoxic adaptation by promoting hypoxia-induced HIF-1α stabilization. Intriguingly, hypoxia is a strong regulator of MIF expression and secretion, suggesting that hypoxia-induced MIF acts as an amplifying factor for both hypoxia and normoxia-associated angiogenic growth factor expression in human malignancies. Combined, these findings suggest that MIF overexpression contributes to tumoral hypoxic adaptation and, by extension, therapeutic responsiveness and disease prognosis. This review summarizes recent literature on the contributions of MIF to tumor-associated angiogenic growth factor expression, neovascularization and hypoxic adaptation. We also will review recent efforts aimed at identifying and employing small-molecule antagonists of MIF as a novel approach to cancer therapeutics.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:0014-4800
1096-0945
DOI:10.1016/j.yexmp.2009.01.001