An Improved ResNet-50 for Garbage Image Classification
In order to solve the classification model's shortcomings, this study suggests a new trash classification model that is generated by altering the structure of the ResNet-50 network. The improvement is divided into two sections. The first section is to change the residual block. To filter the in...
Saved in:
Published in: | Tehnički vjesnik Vol. 29; no. 5; pp. 1552 - 1559 |
---|---|
Main Authors: | , , |
Format: | Journal Article Paper |
Language: | English |
Published: |
Slavonski Baod
University of Osijek
01-10-2022
Josipa Jurja Strossmayer University of Osijek Strojarski fakultet u Slavonskom Brodu; Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek; Građevinski i arhitektonski fakultet Osijek Faculty of Mechanical Engineering in Slavonski Brod, Faculty of Electrical Engineering in Osijek, Faculty of Civil Engineering in Osijek |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In order to solve the classification model's shortcomings, this study suggests a new trash classification model that is generated by altering the structure of the ResNet-50 network. The improvement is divided into two sections. The first section is to change the residual block. To filter the input features, the attention module is inserted into the residual block. Simultaneously, the downsampling process in the residual block is changed to decrease information loss. The second section is multi-scale feature fusion. To optimize feature usage, horizontal and vertical multi-scale feature fusion is integrated to the primary network structure. Because of the filtering and reuse of image features, the enhanced model can achieve higher classification performance than existing models for small data sets with few samples. The experimental results show that the modified model outperforms the original ResNet-50 model on the TrashNet dataset by 7.62% and is more robust. In the meanwhile, our model is more accurate than other advanced methods. |
---|---|
Bibliography: | 281668 |
ISSN: | 1330-3651 1848-6339 |
DOI: | 10.17559/TV-20220420124810 |