Selective and invariant sensitivity to crosses and corners in cat striate neurons

Many neurons (56/174, or 32.2%) studied in the cat striate cortex (area 17) increased significantly (by 3.3 times on average) their responses under stimulation by cruciform or corner figures of specific or non-specific shape and orientation flashing in receptive field as compared with single light b...

Full description

Saved in:
Bibliographic Details
Published in:Neuroscience Vol. 84; no. 3; pp. 713 - 721
Main Authors: Shevelev, I.A, Lazareva, N.A, Sharaev, G.A, Novikova, R.V, Tikhomirov, A.S
Format: Journal Article
Language:English
Published: United States Elsevier Ltd 01-02-1998
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Many neurons (56/174, or 32.2%) studied in the cat striate cortex (area 17) increased significantly (by 3.3 times on average) their responses under stimulation by cruciform or corner figures of specific or non-specific shape and orientation flashing in receptive field as compared with single light bar of preferred orientation. Most of these neurons (71.4%) were found to be highly selective to both the shape (the angle between the figure's lines) and orientation of these figures. In the neuronal selection studied we have also found all possible types of invariance of the cross and corner tuning to orientation and/or shape of these figures. We found neurons with selectivity to the form of the figures and invariance to their orientation and, on the contrary, units invariant to shape but selective to orientation. Some cells were found invariant to both the form and orientation of the cruciform or corner figure but highly sensitive to appearance of any such figure in the receptive field. Two main hypotheses about the mechanisms of selective sensitivity to crosses and angles can be considered. They are as follows: an excitatory convergence of two units with different preferred orientations, and intracortical inhibitory interactions. The cells with double orientation tuning for a single bar are found relatively rarely (about 20%), thus making the first suggestion the most unlikely. This circumstance is of special importance since it provides evidence against the hierarchic formation of the higher-order cortical units from a set of lower-order cells that is still under discussion. [8]The units with high sensitivity to cross or corner seem to be ideally suitable for their selection, rather than to serve as classical orientation detectors only.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0306-4522
1873-7544
DOI:10.1016/S0306-4522(97)00393-X