Turner syndrome in diverse populations
Turner syndrome (TS) is a common multiple congenital anomaly syndrome resulting from complete or partial absence of the second X chromosome. In this study, we explore the phenotype of TS in diverse populations using clinical examination and facial analysis technology. Clinical data from 78 individua...
Saved in:
Published in: | American journal of medical genetics. Part A Vol. 182; no. 2; pp. 303 - 313 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Hoboken, USA
John Wiley & Sons, Inc
01-02-2020
Wiley Subscription Services, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Turner syndrome (TS) is a common multiple congenital anomaly syndrome resulting from complete or partial absence of the second X chromosome. In this study, we explore the phenotype of TS in diverse populations using clinical examination and facial analysis technology. Clinical data from 78 individuals and images from 108 individuals with TS from 19 different countries were analyzed. Individuals were grouped into categories of African descent (African), Asian, Latin American, Caucasian (European descent), and Middle Eastern. The most common phenotype features across all population groups were short stature (86%), cubitus valgus (76%), and low posterior hairline 70%. Two facial analysis technology experiments were conducted: TS versus general population and TS versus Noonan syndrome. Across all ethnicities, facial analysis was accurate in diagnosing TS from frontal facial images as measured by the area under the curve (AUC). An AUC of 0.903 (p < .001) was found for TS versus general population controls and 0.925 (p < .001) for TS versus individuals with Noonan syndrome. In summary, we present consistent clinical findings from global populations with TS and additionally demonstrate that facial analysis technology can accurately distinguish TS from the general population and Noonan syndrome. |
---|---|
Bibliography: | Funding information National Human Genome Research Institute ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1552-4825 1552-4833 1552-4833 |
DOI: | 10.1002/ajmg.a.61461 |