Changes in joint angle, muscle-tendon complex length, muscle contractile tissue displacement, and modulation of EMG activity during acute whole-body vibration
It has been suggested that vibration causes small changes in muscle length, but to the best of our knowledge, these have yet to be demonstrated during whole‐body vibration (WBV). This was an observational study to determine whether acute WBV would result in muscle lengthening. We hypothesized that a...
Saved in:
Published in: | Muscle & nerve Vol. 40; no. 3; pp. 420 - 429 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01-09-2009
Wiley |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | It has been suggested that vibration causes small changes in muscle length, but to the best of our knowledge, these have yet to be demonstrated during whole‐body vibration (WBV). This was an observational study to determine whether acute WBV would result in muscle lengthening. We hypothesized that acute WBV would increase electromyography (EMG) activity concurrently with measurable changes in muscle contractile length. Nine healthy males performed two conditions on a Galileo vibration machine for 15 s at 0 HZ (resting) and 6 HZ at a set knee angle of 18°. Muscle tendon complex length, contractile tissue displacement of the medial gastrocnemius muscle, and EMG of soleus, tibialis anterior, and vastus lateralis muscles were measured. At 6 HZ the medial gastrocnemius (MG) muscle tendon complex (MTC) amplitude (375 μm) was significantly greater (P < 0.05) compared to 0 HZ (35 μm). The MG contractile length (CD) amplitude at 6 HZ (176 μm) was significantly greater (P < 0.01) compared to 0 HZ (4 μm). Significant increases (P < 0.05) in EMG modulation were found for all muscles during the 6 HZ compared to the 0 HZ condition. The major finding was that ≈50% of the elongation occurred within the muscle itself and was associated with preceding changes in EMG. This indicates muscle lengthening may be a prerequisite for eliciting stretch reflexes. In conclusion, there is a temporal association between EMG activity and muscle contractile tissue displacement where low‐frequency WBV results in small muscle length changes and increases muscle activation. Muscle Nerve, 2009 |
---|---|
Bibliography: | Novotec Medical ark:/67375/WNG-T1HCMTQG-M istex:27C850292328628EC761ED57F7DF4A8DA2DE1B69 ArticleID:MUS21330 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0148-639X 1097-4598 |
DOI: | 10.1002/mus.21330 |