Weyl, Dirac and high-fold chiral fermions in topological quantum matter
Quantum materials hosting Weyl fermions have opened a new era of research in condensed matter physics. First proposed in 1929 in the context of particle physics, Weyl fermions have yet to be observed as elementary particles. In 2015, Weyl fermions were detected as collective electronic excitations i...
Saved in:
Published in: | Nature reviews. Materials Vol. 6; no. 9; pp. 784 - 803 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
01-09-2021
Nature Publishing Group |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Quantum materials hosting Weyl fermions have opened a new era of research in condensed matter physics. First proposed in 1929 in the context of particle physics, Weyl fermions have yet to be observed as elementary particles. In 2015, Weyl fermions were detected as collective electronic excitations in the strong spin–orbit coupled material tantalum arsenide, TaAs. This discovery was followed by a flurry of experimental and theoretical explorations of Weyl phenomena in materials. Weyl materials naturally lend themselves to the exploration of the topological index associated with Weyl fermions and their divergent Berry curvature field, as well as the topological bulk–boundary correspondence, giving rise to protected conducting surface states. Here, we review the broader class of Weyl topological phenomena in materials, starting with the observation of emergent Weyl fermions in the bulk and Fermi arc states on the surface of the TaAs family of crystals by photoemission spectroscopy. We then discuss several exotic optical and magnetic responses observed in these materials, as well as progress in developing related chiral materials. We discuss the conceptual development of high-fold chiral fermions, which generalize Weyl fermions, and we review the observation of high-fold chiral fermion phases by taking the rhodium silicide, RhSi, family of crystals as a prime example. Lastly, we discuss recent advances in Weyl line phases in magnetic topological materials. With this Review, we aim to provide an introduction to the basic concepts underlying Weyl physics in condensed matter, and to representative materials and their electronic structures and topology as revealed by spectroscopic studies. We hope this work serves as a guide for future theoretical and experimental explorations of chiral fermions and related topological quantum systems with potentially enhanced functionalities.
Weyl fermions have yet to be observed as elementary particles but can be realized in topological quantum materials. This Review discusses the theoretical and experimental discovery of emergent Weyl fermions, high-fold chiral fermions, topological Weyl lines and related Dirac phases. |
---|---|
Bibliography: | AC02-05CH11231 USDOE Office of Science (SC), Basic Energy Sciences (BES) |
ISSN: | 2058-8437 2058-8437 |
DOI: | 10.1038/s41578-021-00301-3 |