Phosphorylated cAMP Response Element-Binding Protein as a Molecular Marker of Memory Processing in Rat Hippocampus: Effect of Novelty
From mollusks to mammals the activation of cAMP response element-binding protein (CREB) appears to be an important step in the formation of long-term memory (LTM). Here we show that a 5 min exposure to a novel environment (open field) 1 hr after acquisition of a one-trial inhibitory avoidance traini...
Saved in:
Published in: | The Journal of neuroscience Vol. 20; no. 23; pp. 112 - RC112 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Soc Neuroscience
01-12-2000
Society for Neuroscience |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | From mollusks to mammals the activation of cAMP response element-binding protein (CREB) appears to be an important step in the formation of long-term memory (LTM). Here we show that a 5 min exposure to a novel environment (open field) 1 hr after acquisition of a one-trial inhibitory avoidance training hinders both the formation of LTM for the avoidance task and the increase in the phosphorylation state of hippocampal Ser 133 CREB [phosphorylated CREB (pCREB)] associated with the avoidance training. To determine whether this LTM deficit is attributable to the reduced pCREB level, rats were bilaterally cannulated to deliver Sp-adenosine 3', 5'-cyclic monophosphothioate (Sp-cAMPS), an activator of PKA. Infusion of Sp-Adenosine 3',5'-cyclic monophosphothioate Sp-cAMPS to CA1 region increased hippocampal pCREB levels and restored normal LTM of avoidance learning in rats exposed to novelty. Moreover, a 5 min exposure to the open field 10 min before the avoidance training interferes with the amnesic effect of a second 5 min exposure to the open field 1 hr after avoidance training and restores the hippocampal levels of pCREB. In contrast, the avoidance training-associated activation of extracellular signal-regulated kinases (p42 and p44 mitogen-activated protein kinases) in the hippocampus is not altered by novelty. Together, these findings suggest that novelty regulates LTM formation by modulating the phosphorylation state of CREB in the hippocampus. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0270-6474 1529-2401 |
DOI: | 10.1523/jneurosci.20-23-j0002.2000 |