Pharmacological Approaches for the Modulation of the Potassium Channel KV4.x and KChIPs

Ion channels are macromolecular complexes present in the plasma membrane and intracellular organelles of cells. Dysfunction of ion channels results in a group of disorders named channelopathies, which represent an extraordinary challenge for study and treatment. In this review, we will focus on volt...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences Vol. 22; no. 3; p. 1419
Main Authors: Cercós, Pilar, Peraza, Diego A., Benito-Bueno, Angela de, Socuéllamos, Paula G., Aziz-Nignan, Abdoul, Arrechaga-Estévez, Dariel, Beato, Escarle, Peña-Acevedo, Emilio, Albert, Armando, González-Vera, Juan A., Rodríguez, Yoel, Martín-Martínez, Mercedes, Valenzuela, Carmen, Gutiérrez-Rodríguez, Marta
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-02-2021
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ion channels are macromolecular complexes present in the plasma membrane and intracellular organelles of cells. Dysfunction of ion channels results in a group of disorders named channelopathies, which represent an extraordinary challenge for study and treatment. In this review, we will focus on voltage-gated potassium channels (KV), specifically on the KV4-family. The activation of these channels generates outward currents operating at subthreshold membrane potentials as recorded from myocardial cells (ITO, transient outward current) and from the somata of hippocampal neurons (ISA). In the heart, KV4 dysfunctions are related to Brugada syndrome, atrial fibrillation, hypertrophy, and heart failure. In hippocampus, KV4.x channelopathies are linked to schizophrenia, epilepsy, and Alzheimer’s disease. KV4.x channels need to assemble with other accessory subunits (β) to fully reproduce the ITO and ISA currents. β Subunits affect channel gating and/or the traffic to the plasma membrane, and their dysfunctions may influence channel pharmacology. Among KV4 regulatory subunits, this review aims to analyze the KV4/KChIPs interaction and the effect of small molecule KChIP ligands in the A-type currents generated by the modulation of the KV4/KChIP channel complex. Knowledge gained from structural and functional studies using activators or inhibitors of the potassium current mediated by KV4/KChIPs will better help understand the underlying mechanism involving KV4-mediated-channelopathies, establishing the foundations for drug discovery, and hence their treatments.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms22031419