Development of a 3D CNN-based AI Model for Automated Segmentation of the Prostatic Urethra
The combined use of prostate cancer radiotherapy and MRI planning is increasingly being used in the treatment of clinically significant prostate cancers. The radiotherapy dosage quantity is limited by toxicity in organs with de-novo genitourinary toxicity occurrence remaining unperturbed. Estimation...
Saved in:
Published in: | Academic radiology Vol. 29; no. 9; pp. 1404 - 1412 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Elsevier Inc
01-09-2022
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The combined use of prostate cancer radiotherapy and MRI planning is increasingly being used in the treatment of clinically significant prostate cancers. The radiotherapy dosage quantity is limited by toxicity in organs with de-novo genitourinary toxicity occurrence remaining unperturbed. Estimation of the urethral radiation dose via anatomical contouring may improve our understanding of genitourinary toxicity and its related symptoms. Yet, urethral delineation remains an expert-dependent and time-consuming procedure. In this study, we aim to develop a fully automated segmentation tool for the prostatic urethra.
This study incorporated 939 patients’ T2-weighted MRI scans (train/validation/test/excluded: 657/141/140/1 patients), including in-house and public PROSTATE-x datasets, and their corresponding ground truth urethral contours from an expert genitourinary radiologist. The AI model was developed using MONAI framework and was based on a 3D-UNet. AI model performance was determined by Dice score (volume-based) and the Centerline Distance (CLD) between the prediction and ground truth centers (slice-based). All predictions were compared to ground truth in a systematic failure analysis to elucidate the model's strengths and weaknesses. The Wilcoxon-rank sum test was used for pair-wise comparison of group differences.
The overall organ-adjusted Dice score for this model was 0.61 and overall CLD was 2.56 mm. When comparing prostates with symmetrical (n = 117) and asymmetrical (n = 23) benign prostate hyperplasia (BPH), the AI model performed better on symmetrical prostates compared to asymmetrical in both Dice score (0.64 vs. 0.51 respectively, p < 0.05) and mean CLD (2.3 mm vs. 3.8 mm respectively, p < 0.05). When calculating location-specific performance, the performance was highest at the apex and lowest at the base location of the prostate for Dice and CLD. Dice location dependence: symmetrical (Apex, Mid, Base: 0.69 vs. 0.67 vs. 0.54 respectively, p < 0.05) and asymmetrical (Apex, Mid, Base: 0.68 vs. 0.52 vs. 0.39 respectively, p < 0.05). CLD location dependence: symmetrical (Apex, Mid, Base: 1.43 mm vs. 2.15 mm vs. 3.28 mm, p < 0.05) and asymmetrical (Apex, Mid, Base: 1.83 mm vs. 3.1 mm vs. 6.24 mm, p < 0.05).
We developed a fully automated prostatic urethra segmentation AI tool yielding its best performance in prostate glands with symmetric BPH features. This system can potentially be used to assist treatment planning in patients who can undergo whole gland radiation therapy or ablative focal therapy. |
---|---|
ISSN: | 1076-6332 1878-4046 |
DOI: | 10.1016/j.acra.2022.01.009 |