Application of the CRISPR-Cas System for Efficient Genome Engineering in Plants

Dear Editor, Recently, engineered endonucleases, such as Zinc-Finger Nucleases (ZFNs) (Carroll, 2011), Transcription Activator-Like Effector Nucleases (TALENs) (Mahfouz et al., 2011; Li et al., 2012), and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated (Cas) systems (Co...

Full description

Saved in:
Bibliographic Details
Published in:Molecular plant Vol. 6; no. 6; pp. 2008 - 2011
Main Authors: Mao, Yanfei, Zhang, Hui, Xu, Nanfei, Zhang, Botao, Gou, Feng, Zhu, Jian-Kang
Format: Journal Article
Language:English
Published: England Elsevier Inc 01-11-2013
Cell Press
Oxford University Press
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Dear Editor, Recently, engineered endonucleases, such as Zinc-Finger Nucleases (ZFNs) (Carroll, 2011), Transcription Activator-Like Effector Nucleases (TALENs) (Mahfouz et al., 2011; Li et al., 2012), and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated (Cas) systems (Cong et al., 2013) have been successfully used for gene editing in a variety of species. These systems generate double-strand breaks (DSBs) at target loci to drive site-specific DNA sequence modifica- tions. The modifications include sequence insertion and deletion and other mutations in the host genomes via the error-prone non-homologous end joining (NHEJ) pathway or sequence correction or replacement through the error-free homologous recombination (HR) pathway (Symington and Gautier, 2011). Here, we show that the CRISPR-Cas system can be applied to generate targeted gene mutations and gene corrections in plants, and the system can also be readily engi- neered to achieve deletion of large DNA fragments and for multiplex gene editing in plants.
Bibliography:31-2013/Q
Dear Editor, Recently, engineered endonucleases, such as Zinc-Finger Nucleases (ZFNs) (Carroll, 2011), Transcription Activator-Like Effector Nucleases (TALENs) (Mahfouz et al., 2011; Li et al., 2012), and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated (Cas) systems (Cong et al., 2013) have been successfully used for gene editing in a variety of species. These systems generate double-strand breaks (DSBs) at target loci to drive site-specific DNA sequence modifica- tions. The modifications include sequence insertion and deletion and other mutations in the host genomes via the error-prone non-homologous end joining (NHEJ) pathway or sequence correction or replacement through the error-free homologous recombination (HR) pathway (Symington and Gautier, 2011). Here, we show that the CRISPR-Cas system can be applied to generate targeted gene mutations and gene corrections in plants, and the system can also be readily engi- neered to achieve deletion of large DNA fragments and for multiplex gene editing in plants.
SourceType-Other Sources-1
ObjectType-Article-2
content type line 63
ObjectType-Correspondence-1
ISSN:1674-2052
1752-9867
DOI:10.1093/mp/sst121