The Nedd4-like Protein KIAA0439 Is a Potential Regulator of the Epithelial Sodium Channel
The amiloride-sensitive epithelial sodium channel (ENaC) plays a critical role in fluid and electrolyte homeostasis and consists of α, β, and γ subunits. The carboxyl terminus of each ENaC subunit contains a PPxY, motif which is believed to be important for interaction with the WW domains of the ubi...
Saved in:
Published in: | The Journal of biological chemistry Vol. 276; no. 11; pp. 8597 - 8601 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Elsevier Inc
16-03-2001
American Society for Biochemistry and Molecular Biology |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The amiloride-sensitive epithelial sodium channel (ENaC) plays a critical role in fluid and electrolyte homeostasis and consists of α, β, and γ subunits. The carboxyl terminus of each ENaC subunit contains a PPxY, motif which is believed to be important for interaction with the WW domains of the ubiquitin-protein ligase, Nedd4. Disruption of this interaction, as in Liddle's syndrome, where mutations delete or alter the PPxY motif of either the β or γ subunits, has been proposed to result in increased ENaC activity. Here we present evidence that KIAA0439 protein, a close relative of Nedd4, is also a potential regulator of ENaC. We demonstrate that KIAA0439 WW domains bind all three ENaC subunits. We show that a recombinant KIAA0439 WW domain protein acts as a dominant negative mutant that can interfere with the Na+-dependent feedback inhibition of ENaC in whole-cell patch clamp experiments. We propose that KIAA0439 and Nedd4 proteins either play a redundant role in ENaC regulation or function in a tissue- and/or signal-specific manner to down-regulate ENaC. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.C000906200 |