Parallel Optimal Reactive Power Flow Based on Cooperative Co-Evolutionary Differential Evolution and Power System Decomposition
Differential evolution (DE) is a promising evolutionary algorithm for solving optimal reactive power flow problems, but it requires relatively large population to avoid premature convergence. In order to overcome this disadvantage, a novel decomposition and coordination method based on the cooperati...
Saved in:
Published in: | IEEE transactions on power systems Vol. 22; no. 1; pp. 249 - 257 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
IEEE
01-02-2007
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Differential evolution (DE) is a promising evolutionary algorithm for solving optimal reactive power flow problems, but it requires relatively large population to avoid premature convergence. In order to overcome this disadvantage, a novel decomposition and coordination method based on the cooperative co-evolutionary architecture and the voltage-var sensitivity-based power system decomposition technique is proposed and incorporated with DE in this paper. It is implemented with a three-level parallel computing topology on a PC-cluster. Based on the IEEE 118-bus system test case, the effectiveness of the proposed method has been verified by comparison with the parallel basic DE not using the decomposition and coordination technique |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0885-8950 1558-0679 |
DOI: | 10.1109/TPWRS.2006.887889 |