Parallel Optimal Reactive Power Flow Based on Cooperative Co-Evolutionary Differential Evolution and Power System Decomposition

Differential evolution (DE) is a promising evolutionary algorithm for solving optimal reactive power flow problems, but it requires relatively large population to avoid premature convergence. In order to overcome this disadvantage, a novel decomposition and coordination method based on the cooperati...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power systems Vol. 22; no. 1; pp. 249 - 257
Main Authors: Liang, C.H., Chung, C.Y., Wong, K.P., Duan, X.Z.
Format: Journal Article
Language:English
Published: New York IEEE 01-02-2007
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Differential evolution (DE) is a promising evolutionary algorithm for solving optimal reactive power flow problems, but it requires relatively large population to avoid premature convergence. In order to overcome this disadvantage, a novel decomposition and coordination method based on the cooperative co-evolutionary architecture and the voltage-var sensitivity-based power system decomposition technique is proposed and incorporated with DE in this paper. It is implemented with a three-level parallel computing topology on a PC-cluster. Based on the IEEE 118-bus system test case, the effectiveness of the proposed method has been verified by comparison with the parallel basic DE not using the decomposition and coordination technique
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0885-8950
1558-0679
DOI:10.1109/TPWRS.2006.887889