Protein engineering of a nanoCLAMP antibody mimetic scaffold as a platform for producing bioprocess-compatible affinity capture ligands
Protein A affinity chromatography is widely used for the large-scale purification of antibodies because of its high yield, selectivity, and compatibility with NaOH sanitation. A general platform to produce robust affinity capture ligands for proteins beyond antibodies would improve bioprocessing eff...
Saved in:
Published in: | The Journal of biological chemistry Vol. 299; no. 7; p. 104910 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Elsevier Inc
01-07-2023
American Society for Biochemistry and Molecular Biology |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Protein A affinity chromatography is widely used for the large-scale purification of antibodies because of its high yield, selectivity, and compatibility with NaOH sanitation. A general platform to produce robust affinity capture ligands for proteins beyond antibodies would improve bioprocessing efficiency. We previously developed nanoCLAMPs (nano Clostridial Antibody Mimetic Proteins), a class of antibody mimetic proteins useful as lab-scale affinity capture reagents. This work describes a protein engineering campaign to develop a more robust nanoCLAMP scaffold compatible with harsh bioprocessing conditions. The campaign generated an improved scaffold with dramatically improved resistance to heat, proteases, and NaOH. To isolate additional nanoCLAMPs based on this scaffold, we constructed a randomized library of 1 × 1010 clones and isolated binders to several targets. We then performed an in-depth characterization of nanoCLAMPs recognizing yeast SUMO, a fusion partner used for the purification of recombinant proteins. These second-generation nanoCLAMPs typically had a Kd of <80 nM, a Tm of >70 °C, and a t1/2 in 0.1 mg/ml trypsin of >20 h. Affinity chromatography resins bearing these next-generation nanoCLAMPs enabled single-step purifications of SUMO fusions. Bound target proteins could be eluted at neutral or acidic pH. These affinity resins maintained binding capacity and selectivity over 20 purification cycles, each including 10 min of cleaning-in-place with 0.1 M NaOH, and remained functional after exposure to 100% DMF and autoclaving. The improved nanoCLAMP scaffold will enable the development of robust, high-performance affinity chromatography resins against a wide range of protein targets. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1016/j.jbc.2023.104910 |