Evaluation of Gilthead Seabream (Sparus aurata) Immune Response after LCDV-Sa DNA Vaccination
Lymphocystis disease is the main viral pathology reported in gilthead seabream. Its etiological agent is Lymphocystis disease virus 3 (LCDV-Sa), genus Lymphocystivirus, family Iridoviridae. There are no effective treatments or vaccines for LCDV control, thus the main aim of this study was to develop...
Saved in:
Published in: | Animals (Basel) Vol. 11; no. 6; p. 1613 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
29-05-2021
MDPI |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Lymphocystis disease is the main viral pathology reported in gilthead seabream. Its etiological agent is Lymphocystis disease virus 3 (LCDV-Sa), genus Lymphocystivirus, family Iridoviridae. There are no effective treatments or vaccines for LCDV control, thus the main aim of this study was to develop a DNA vaccine, and to evaluate both the protection conferred against LCDV-Sa infection and the immune response in vaccinated fish. The vaccine was constructed by cloning the mcp gene (ORF LCDVSa062R) into pcDNA3.1/NT-GFP-TOPO. Two independent vaccination trials were conducted. In the first one, 5–7 g fish were intramuscularly injected with the vaccine (pcDNA-MCP) or the empty-plasmid, and the distribution and expression of the vaccine was investigated. Furthermore, vaccinated fish were challenged with LCDV-Sa in order to access the protective capacity of the vaccine. In the second trial, 70–100 g fish were vaccinated as specified, and the immune response was evaluated analyzing the expression of 23 immune-related genes and the production of specific antibodies. The results showed that the vaccine triggers an immune response characterized by the overexpression of genes relating to the inflammatory process, but not the innate antiviral immunity relating to type I IFN (interferon), and also induces the production of specific neutralizing antibodies, which could explain the protection against LCDV-Sa in vaccinated fish. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2076-2615 2076-2615 |
DOI: | 10.3390/ani11061613 |