Multi Drug Loaded Thermo-Responsive Fibrinogen-graft-Poly(N-vinyl Caprolactam) Nanogels for Breast Cancer Drug Delivery
This study aims at the targeted delivery of 5-fluorouracil (5-FU) and Megestrol acetate (Meg) loaded fibrinogen-graft-poly(N-Vinyl caprolactam) nanogels (5-FU/Meg-fib-graft-PNVCL NGs) toward α5β1-integrins receptors expressed on breast cancer cells to have enhanced anti-cancer effect in vitro. To ac...
Saved in:
Published in: | Journal of biomedical nanotechnology Vol. 11; no. 3; p. 392 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
01-03-2015
|
Subjects: | |
Online Access: | Get more information |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study aims at the targeted delivery of 5-fluorouracil (5-FU) and Megestrol acetate (Meg) loaded fibrinogen-graft-poly(N-Vinyl caprolactam) nanogels (5-FU/Meg-fib-graft-PNVCL NGs) toward α5β1-integrins receptors expressed on breast cancer cells to have enhanced anti-cancer effect in vitro. To achieve this aim, we developed biocompatible thermoresponsive fib-graft-PNVCL NGs using fibrinogen and carboxyl terminated PNVCL via EDC/NHS amidation reaction. The Lower Critical Solution Temperature (LCST) of fib-graft-PNVCL could be tuned according to PNVCL/fibrinogen compositions. The 100-120 nm sized nanogels of fib-graft-PNVCL (LCST = 35 ?1 'C) was prepared using CaCl2 cross-linker. The 5-FU/Meg-fib-graft-PNVCL NGs showed a particle size of 150-170 nm size. The drug loading efficiency with 5-FU was 62% while Meg showed 74%. The 5-FU and Meg release was prominent above LCST than below LCST. The multi drug loaded fib-graft-PNVCL NGs showed enhanced toxicity, apoptosis and uptake by breast cancer (MCF-7) cells compared to their individual doses above their LCST. The in vivo assessment in Swiss albino mice showed sustained release of Meg and 5-FU as early as 3 days, confirming the therapeutic efficiency of the formulation. These results demonstrate an enhanced platform for the future animal studies on breast tumor xenograft model. |
---|---|
ISSN: | 1550-7033 |
DOI: | 10.1166/jbn.2015.1911 |