Threshold concentration for H blistering in defect free W

Lattice distortion induced by high concentration of H is believed to be precursor of H blistering in single crystalline W (SCW) during H isotope irradiation. However, the critical H concentration needed to trigger bond-breaking of metal atoms presents a challenge to measure. Using density functional...

Full description

Saved in:
Bibliographic Details
Published in:Journal of nuclear materials Vol. 421; no. 1; pp. 176 - 180
Main Authors: Xiao, W., Luo, G.-N., Geng, W.T.
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 01-02-2012
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Lattice distortion induced by high concentration of H is believed to be precursor of H blistering in single crystalline W (SCW) during H isotope irradiation. However, the critical H concentration needed to trigger bond-breaking of metal atoms presents a challenge to measure. Using density functional theory, we have calculated the formation energy of a vacancy and a self-interstitial atom (SIA) in supersaturated defect-free SCW with various H concentrations. When the ratio of H:W exceeds 1:2, the formation of both vacancies and self-interstitials becomes exothermic, meaning that spontaneous formation of micro-voids which can accommodate molecular H 2 will occur. Molecular H 2 is not allowed to form, and it is not needed either at the very initial stage of H blistering in SCW. With supersaturated H, the free volume at the vacancy or SIA is greatly smeared out with severe lattice distortion and more H can be trapped than in the dilute H case.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-3115
1873-4820
DOI:10.1016/j.jnucmat.2011.09.019