Modeling the inactivation kinetics of bacillus spores by glutaraldehyde

Our goal was to develop a mathematical kinetic model to predict the sporicidal activity of glutaraldehyde, which is an active ingredient frequently used in commercial products employed for liquid disinfection and decontamination. We used our previously published data on spore inactivation by glutara...

Full description

Saved in:
Bibliographic Details
Published in:Letters in applied microbiology Vol. 46; no. 5; pp. 568 - 574
Main Authors: Retta, S.M, Sagripanti, J.-L
Format: Journal Article
Language:English
Published: Oxford, UK Oxford, UK : Blackwell Publishing Ltd 01-05-2008
Blackwell Publishing Ltd
Blackwell Science
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Our goal was to develop a mathematical kinetic model to predict the sporicidal activity of glutaraldehyde, which is an active ingredient frequently used in commercial products employed for liquid disinfection and decontamination. We used our previously published data on spore inactivation by glutaraldehyde to develop a predictive model obtained by calculating multiple independent modifying functions. The model was then validated by comparing model predicted values to new experimental data. For model validation, quality-controlled spores of Bacillus athrophaeus (previously and generally known as Bacillus subtilis globigii) were exposed under conditions where several physicochemical variables were modified simultaneously, and the spore surviving fractions were measured by titration. The model predicted within one order of magnitude variations in sporicidal effectiveness due to changes in main parameters (glutaraldehyde concentration, temperature or time-duration of the treatment). Other parameters such pH, salinity and the effect of serum concentration were also addressed, albeit with less accuracy. The model should be useful to quantitatively estimate the effectiveness of glutaraldehyde-based disinfectants, decontaminants, and germicides under the described conditions, particularly when limited data are available or when spore virulence (like that of Bacillus anthracis) precludes extensive experimentation. A similar approach could predict the effectiveness of a variety of decontaminant and disinfecting agents.
Bibliography:http://dx.doi.org/10.1111/j.1472-765X.2008.02358.x
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0266-8254
1472-765X
DOI:10.1111/j.1472-765X.2008.02358.x