Heparin treatment of vascular smooth muscle cells results in the synthesis of the dual-specificity phosphatase MKP-1

The ability of heparin to block proliferation of vascular smooth muscle cells has been well documented. It is clear that heparin treatment can decrease the level of ERK activity in vascular smooth muscle cells that are sensitive to heparin. In this study, the mechanism by which heparin induces decre...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cellular biochemistry Vol. 110; no. 2; pp. 382 - 391
Main Authors: Blaukovitch, Cheryl Isleib, Pugh, Raymond, Gilotti, Albert C., Kanyi, Daniela, Lowe-Krentz, Linda J.
Format: Journal Article
Language:English
Published: Hoboken Wiley Subscription Services, Inc., A Wiley Company 15-05-2010
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The ability of heparin to block proliferation of vascular smooth muscle cells has been well documented. It is clear that heparin treatment can decrease the level of ERK activity in vascular smooth muscle cells that are sensitive to heparin. In this study, the mechanism by which heparin induces decreases in ERK activity was investigated by evaluating the dual specificity phosphatase, MKP‐1, in heparin treated cells. Heparin induced MKP‐1 synthesis in a time and concentration dependent manner. The time‐course of MKP‐1 expression correlated with the decrease in ERK activity. Over the same time frame, heparin treatment did not result in decreases in MEK‐1 activity which could have, along with constitutive phosphatase activity, accounted for the decrease in ERK activity. Antibodies against a heparin receptor also induced the synthesis of MKP‐1 along with decreasing ERK activity. Blocking either phosphatase activity or synthesis also blocked heparin‐induced decreases in ERK activity. Consistent with a role for MKP‐1, a nuclear phosphatase, heparin treated cells exhibited decreases in nuclear ERK activity more rapidly than cells not treated with heparin. The data support MKP‐1 as a heparin‐induced phosphatase that dephosphorylates ERK, decreasing ERK activity, in vascular smooth muscle cells. J. Cell. Biochem. 110: 382–391, 2010. © 2010 Wiley‐Liss, Inc.
Bibliography:ark:/67375/WNG-6H0WMM4D-M
NIH - No. HL54269
istex:0AAD8A31CC4E9ED9F26A9F5D15AD32B9982A78C3
ArticleID:JCB22543
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0730-2312
1097-4644
DOI:10.1002/jcb.22543