Metabolically programmed iron chelators
[Display omitted] Extensive structure activity relationship (SAR) studies focused on the desferrithiocin [DFT, (S)-4,5-dihydro-2-(3-hydroxy-2-pyridinyl)-4-methyl-4-thiazolecarboxylic acid] pharmacophore have led to three different DFT analogs being evaluated clinically for the treatment of iron over...
Saved in:
Published in: | Bioorganic & medicinal chemistry Vol. 23; no. 17; pp. 5954 - 5971 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
Elsevier Ltd
01-09-2015
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | [Display omitted]
Extensive structure activity relationship (SAR) studies focused on the desferrithiocin [DFT, (S)-4,5-dihydro-2-(3-hydroxy-2-pyridinyl)-4-methyl-4-thiazolecarboxylic acid] pharmacophore have led to three different DFT analogs being evaluated clinically for the treatment of iron overload diseases, for example, thalassemia. The SAR work revealed that the lipophilicity of a ligand, as determined by its partition between octanol and water, logPapp, could have a profound effect on the drug’s iron clearing efficiency (ICE), organ distribution, and toxicity profile. While within a given structural family the more lipophilic a chelator the better the ICE, unfortunately, the more lipophilic ligands are often more toxic. Thus, a balance between lipophilicity, ICE, and toxicity must be achieved. In the current study, we introduce the concept of ‘metabolically programmed’ iron chelators, that is, highly lipophilic, orally absorbable, effective deferration agents which, once absorbed, are quickly converted to their nontoxic, hydrophilic counterparts. |
---|---|
ISSN: | 0968-0896 1464-3391 |
DOI: | 10.1016/j.bmc.2015.06.059 |