Metabolically programmed iron chelators

[Display omitted] Extensive structure activity relationship (SAR) studies focused on the desferrithiocin [DFT, (S)-4,5-dihydro-2-(3-hydroxy-2-pyridinyl)-4-methyl-4-thiazolecarboxylic acid] pharmacophore have led to three different DFT analogs being evaluated clinically for the treatment of iron over...

Full description

Saved in:
Bibliographic Details
Published in:Bioorganic & medicinal chemistry Vol. 23; no. 17; pp. 5954 - 5971
Main Authors: Bergeron, Raymond J., Bharti, Neelam, McManis, James S., Wiegand, Jan
Format: Journal Article
Language:English
Published: England Elsevier Ltd 01-09-2015
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] Extensive structure activity relationship (SAR) studies focused on the desferrithiocin [DFT, (S)-4,5-dihydro-2-(3-hydroxy-2-pyridinyl)-4-methyl-4-thiazolecarboxylic acid] pharmacophore have led to three different DFT analogs being evaluated clinically for the treatment of iron overload diseases, for example, thalassemia. The SAR work revealed that the lipophilicity of a ligand, as determined by its partition between octanol and water, logPapp, could have a profound effect on the drug’s iron clearing efficiency (ICE), organ distribution, and toxicity profile. While within a given structural family the more lipophilic a chelator the better the ICE, unfortunately, the more lipophilic ligands are often more toxic. Thus, a balance between lipophilicity, ICE, and toxicity must be achieved. In the current study, we introduce the concept of ‘metabolically programmed’ iron chelators, that is, highly lipophilic, orally absorbable, effective deferration agents which, once absorbed, are quickly converted to their nontoxic, hydrophilic counterparts.
ISSN:0968-0896
1464-3391
DOI:10.1016/j.bmc.2015.06.059