The discovery of combined toxicity effects and mechanisms of hexaconazole and arsenic to mice based on untargeted metabolomics
The high detected frequencies of hexaconazole (Hex) and arsenic (As) increased the probabilities of their co-existence in agricultural products. However, the combined toxicity effect and mechanism of action for these two pollutants were still unclear. In this study, an untargeted metabolomics method...
Saved in:
Published in: | Ecotoxicology and environmental safety Vol. 226; p. 112859 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier Inc
15-12-2021
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The high detected frequencies of hexaconazole (Hex) and arsenic (As) increased the probabilities of their co-existence in agricultural products. However, the combined toxicity effect and mechanism of action for these two pollutants were still unclear. In this study, an untargeted metabolomics method with ultra high performance liquid chromatography and tandem mass spectrometry (UPLC-MS/MS) was developed to monitor the changes of endogenous metabolites and metabolism pathways in mice liver. Our study revealed that significant differences in metabolomics profiles were observed after Hex, As, and Hex+As exposure for 90 d. Hex exposure altered 54 metabolites and 11 pathways significantly which were mainly lipid-related. For As exposure, 63 metabolites and 9 pathways were affected most of which were amino acid-related. Hex+As induced 93 metabolites changes with 34% was lipids and lipid-like molecules and 22% was organic acids and derivatives. Hex+As exposure shared the pathways that altered by Hex and As indicated that the interaction of Hex and As might be independent action. The results of this study could provide an important insight for understanding the mechanism of combined toxicity for Hex and As and be helpful for evaluating their health risk to human.
[Display omitted]
•Hexaconazole exposure mainly altered lipid-related metabolites and pathways.•Arsenic exposure mainly changed amino acid-related metabolites and pathways.•Hexaconazole+arsenic shared most metabolites and pathways with hexaconazole or arsenic.•The interaction of hexaconazole and arsenic was independent action. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0147-6513 1090-2414 |
DOI: | 10.1016/j.ecoenv.2021.112859 |