Perceptual distraction causes visual memory encoding intrusions
Given the complexity of our visual environments, a number of mechanisms help us prioritize goal-consistent visual information. When searching for a friend in a crowd, for instance, visual working memory (VWM) maintains a representation of your target (i.e., your friend’s shirt) so that attention can...
Saved in:
Published in: | Psychonomic bulletin & review Vol. 28; no. 5; pp. 1592 - 1600 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
New York
Springer US
01-10-2021
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Given the complexity of our visual environments, a number of mechanisms help us prioritize goal-consistent visual information. When searching for a friend in a crowd, for instance, visual working memory (VWM) maintains a representation of your target (i.e., your friend’s shirt) so that attention can be subsequently guided toward target-matching features. In turn, attentional filters gate access to VWM to ensure that only the most relevant information is encoded and used to guide behavior. Distracting (i.e., unexpected/salient) information, however, can also capture your attention, disrupting search. In the current study we ask: does distraction also disrupt control over the VWM filter? Although the effect of distraction on search behavior is heavily studied, we know little about its consequences for VWM. Participants performed two consecutive visual search tasks on each trial. Stimulus color was irrelevant for both search tasks, but on trials where a salient distractor appeared on Search 1, we found evidence that the color associated with this distractor was incidentally encoded into VWM, resulting in memory-driven capture on Search 2. In two different experiments we observed slower responses on Search 2 when a non-target item matched the color of the salient distractor from Search 1; this effect was specific to the color associated with salient distraction and not induced by other non-target colors from the Search 1 display. We propose a novel Filter Disruption Theory: distraction disrupts the attentional filter that controls access to VWM, resulting in the encoding of irrelevant inputs at the time of capture. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1069-9384 1531-5320 |
DOI: | 10.3758/s13423-021-01937-6 |