Development and Implantation of a Biocompatible Auricular Prosthesis
A patient-specific auricular prosthesis made of biocompatible non-biodegradable polyurethane with biomimetic mechanical properties was developed and printed using a 3D printer. A three-point bending study of the mechanical properties of printed samples of this material showed that the printed prosth...
Saved in:
Published in: | Biomedical engineering Vol. 49; no. 6; pp. 327 - 330 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
Springer US
01-03-2016
Springer Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A patient-specific auricular prosthesis made of biocompatible non-biodegradable polyurethane with biomimetic mechanical properties was developed and printed using a 3D printer. A three-point bending study of the mechanical properties of printed samples of this material showed that the printed prosthesis is similar in its material properties to natural human aural cartilage. After subcutaneous implantation into mice the auricular prosthesis maintained its initial shape and size. Thus, 3D printing enables creation of a patient-specific biocompatible auricular prosthesis with biomimetic material properties and the ability to maintain the original shape and size after in vivo implantation. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0006-3398 1573-8256 |
DOI: | 10.1007/s10527-016-9559-5 |