Simplified dark matter models in the light of AMS-02 antiproton data
A bstract In this work we perform an analysis of the recent AMS-02 antiproton flux and the antiproton-to-proton ratio in the framework of simplified dark matter models. To predict the AMS-02 observables we adopt the propagation and injection parameters determined by the observed fluxes of nuclei. We...
Saved in:
Published in: | The journal of high energy physics Vol. 2017; no. 4; pp. 1 - 17 |
---|---|
Main Author: | |
Format: | Journal Article |
Language: | English |
Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01-04-2017
Springer Nature B.V SpringerOpen |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A
bstract
In this work we perform an analysis of the recent AMS-02 antiproton flux and the antiproton-to-proton ratio in the framework of simplified dark matter models. To predict the AMS-02 observables we adopt the propagation and injection parameters determined by the observed fluxes of nuclei. We assume that the dark matter particle is a Dirac fermionic dark matter, with leptophobic pseudoscalar or axialvector mediator that couples only to Standard Model quarks and dark matter particles. We find that the AMS-02 observations are consistent with the dark matter framework within the uncertainties. The antiproton data prefer a dark matter (mediator) mass in the 700 GeV-5 TeV region for the annihilation with pseudoscalar mediator and greater than 700 GeV (200 GeV-1 TeV) for the annihilation with axialvector mediator, respectively, at about 68% confidence level. The AMS-02 data require an effective dark matter annihilation cross section in the region of 1×10
−25
−1×10
−24
(1×10
−25
−4×10
−24
) cm
3
/sforthesimplifiedmodelwithpseudoscalar (axialvector) mediator. The constraints from the LHC and Fermi-LAT are also discussed. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1029-8479 1029-8479 |
DOI: | 10.1007/JHEP04(2017)112 |