Metabolomics and Lipidomics Screening Reveal Reprogrammed Signaling Pathways toward Cancer Development in Non-Alcoholic Steatohepatitis
With the rising incidence of hepatocellular carcinoma (HCC) from non-alcoholic steatohepatitis (NASH), identifying new metabolic readouts that function in metabolic pathway perpetuation is still a demand. The study aimed to compare the metabolic signature between NASH and NASH-HCC patients to explor...
Saved in:
Published in: | International journal of molecular sciences Vol. 24; no. 1; p. 210 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Switzerland
MDPI
22-12-2022
MDPI AG |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | With the rising incidence of hepatocellular carcinoma (HCC) from non-alcoholic steatohepatitis (NASH), identifying new metabolic readouts that function in metabolic pathway perpetuation is still a demand. The study aimed to compare the metabolic signature between NASH and NASH-HCC patients to explore novel reprogrammed metabolic pathways that might modulate cancer progression in NASH patients. NASH and NASH-HCC patients were recruited and screened for metabolomics, and isotope-labeled lipidomics were targeted and profiled using the EXION-LCTM system equipped with a Triple-TOFTM 5600+ system. Results demonstrated significantly (
≤ 0.05) higher levels of triacylglycerol, AFP, AST, and cancer antigen 19-9 in NASH-HCC than in NASH patients, while prothrombin time, platelet count, and total leukocyte count were decreased significantly (
≤ 0.05). Serum metabolic profiling showed a panel of twenty metabolites with 10% FDR and
≤ 0.05 in both targeted and non-targeted analysis that could segregate NASH-HCC from NASH patients. Pathway analysis revealed that the metabolites are implicated in the down-regulation of necroptosis, amino acid metabolism, and regulation of lipid metabolism by PPAR-α, biogenic amine synthesis, fatty acid metabolism, and the mTOR signaling pathway. Cholesterol metabolism, DNA repair, methylation pathway, bile acid, and salts metabolism were significantly upregulated in NASH-HCC compared to the NASH group. Metabolite-protein interactions network analysis clarified a set of well-known protein encoding genes that play crucial roles in cancer, including PEMT, IL4I1, BAAT, TAT, CDKAL1, NNMT, PNP, NOS1, and AHCYL. Taken together, reliable metabolite fingerprints are presented and illustrated in a detailed map for the most predominant reprogrammed metabolic pathways that target HCC development from NASH. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms24010210 |