Analytical Modeling of the Suspended-Gate FET and Design Insights for Low-Power Logic

An analytical model for the suspended-gate field-effect transistor (SGFET), dedicated to the dc analysis of SGFET logic circuits, is developed. The model is based on the depletion approximation and expresses the pull-in voltage, the pull-out voltage, and the stable travel range as a function of the...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electron devices Vol. 55; no. 1; pp. 48 - 59
Main Authors: Akarvardar, K., Eggimann, C., Tsamados, D., Singh Chauhan, Y., Wan, G.C., Ionescu, A.M., Howe, R.T., Wong, H.-S.P.
Format: Journal Article
Language:English
Published: New York IEEE 01-01-2008
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An analytical model for the suspended-gate field-effect transistor (SGFET), dedicated to the dc analysis of SGFET logic circuits, is developed. The model is based on the depletion approximation and expresses the pull-in voltage, the pull-out voltage, and the stable travel range as a function of the structural parameters. Gate position is explicitly expressed as a function of the gate voltage, thus enabling the convenient integration of the analytical SGFET relationships into the standard MOSFET models. Starting from the new SGFET model, the influence of the mechanical hysteresis on the circuit steady-state behavior is discussed, the potential of using the SGFET as an ultra-low power switch is demonstrated, and the operation of the complementary SGFET inverter is analyzed.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9383
1557-9646
DOI:10.1109/TED.2007.911070