Boundary Element Modeling of the Realistic Human Body Exposed to Extremely-Low-Frequency (ELF) Electric Fields: Computational and Geometrical Aspects
This paper presents the human exposure assessment to high-voltage extremely-low-frequency (ELF) fields by the three-dimensional (3-D) boundary element method (BEM). The formulation is based on a realistic, anatomically based representation of the human body. The main objective is to analyze the infl...
Saved in:
Published in: | IEEE transactions on electromagnetic compatibility Vol. 49; no. 1; pp. 153 - 162 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
New York, NY
IEEE
01-02-2007
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents the human exposure assessment to high-voltage extremely-low-frequency (ELF) fields by the three-dimensional (3-D) boundary element method (BEM). The formulation is based on a realistic, anatomically based representation of the human body. The main objective is to analyze the influence of the relative position of the arms with respect to the body on the axial distribution of current density along the body and to determine the most vulnerable regions. Numerical results along head, neck, torso, abdomen, arms, legs, and ankles are presented and discussed in the case of grounded subject standing under power-distribution lines and in the vicinity of power transformer substations |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0018-9375 1558-187X |
DOI: | 10.1109/TEMC.2006.888167 |