Theoretical and Experimental Investigations of Direct-Detected RF-Tone-Assisted Optical OFDM Systems

In this paper, we propose and experimentally demonstrate a radio frequency (RF)-tone-assisted optical orthogonal frequency-division multiplexing (OFDM) transmission. By inserting an RF tone at the edge of the signal band and biasing the Mach-Zehnder modulator (MZM) at the null point, the proposed sy...

Full description

Saved in:
Bibliographic Details
Published in:Journal of lightwave technology Vol. 27; no. 10; pp. 1332 - 1339
Main Authors: Wei-Ren Peng, Xiaoxia Wu, Arbab, V.R., Kai-Ming Feng, Shamee, B., Christen, L.C., Jeng-Yuan Yang, Willner, A.E., Sien Chi
Format: Journal Article
Language:English
Published: New York, NY IEEE 15-05-2009
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we propose and experimentally demonstrate a radio frequency (RF)-tone-assisted optical orthogonal frequency-division multiplexing (OFDM) transmission. By inserting an RF tone at the edge of the signal band and biasing the Mach-Zehnder modulator (MZM) at the null point, the proposed system has a better sensitivity and chromatic dispersion (CD) tolerance compared to the previous intensity-modulated single-sideband OFDM (SSB-OFDM). We show analytically that the majority of the linear channel impairments, such as the transmitter, CD, optical filtering, and receiver, can be compensated for by a simple zero-forcing equalizer. Besides, the optimum value of the important parameter, carrier-to-signal-power ratio (CSPR), is analytically obtained and supported via the experimental results. We also observe that the relatively worse sensitivity of the previous SSB-OFDM can be attributed to the limited CSPR. We experimentally demonstrate a 10-Gb/s, 8 quadrature-amplitude modulation (QAM) RF-tone-assisted OFDM transmission, and show that our system has a ~ 5-dB better sensitivity compared to the previous intensity-modulated SSB-OFDM and exhibits a negligible transmission penalty after 260-km uncompensated standard single-mode fiber (SSMF).
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0733-8724
1558-2213
DOI:10.1109/JLT.2008.2012172